

Alfred-Nobel-Str. 10 • 40789 Monheim • Germany Phone: +49 (0)2173 993730 contact@cube-biotech.com www.cube-biotech.com

PureCube DIBMA Glucosamine HEPES

Product	Catalog No.	Package size	
DIBMA Glucosamine HEPES (10x50 mg)	18041	10x50 mg	
DIBMA Glucosamine HEPES (1 g)	18042	1 g	
DIBMA Glucosamine HEPES (10 g)	18061	10 g	
DIRMA Glucosamine HEDES (5v10 a)	18062	5v10 a	

Product Description

The use of a diisobutylene/maleic acid copolymer for stabilization of membrane proteins was first described by Keller and coworkers (1, 2). These copolymers could provide bicelles with membrane proteins from native membranes in absence of detergents, by wrapping around a patch of a lipid bilayer to form a disc-like particle or nanodisc. The DIBMA HEPES based products contain the copolymer and a 50 mM HEPES buffer, adjusted to pH 7.5, so only dd water has to be added for direct application. The pH value has been selected being very effective for protein solubilization. DIBMA 10 from Cube Biotech is a highly purified copolymer (DIBMA) of diisobutylene and maleic acid, with a molecular weight (MW) of

10.000. After solubilization, the copolymer is in a 10% concentration, leading to high concentrations, when added to the membrane protein. Copolymers provide a hydrophobic surface facing the lipids, and a hydrophilic surface at the outside. This setup makes nanodiscs highly soluble in aqueous solutions and allows for the solubilization of membrane proteins in the absence of detergents. Functionalization of the carboxylic acid groups with glucosamine lead to a lowering of the molecule charge and a higher independence against pH changes, Ca^{2+} and Mg^{2+} ions. The product can be used with phospholipids, such as dimyristoyl-glycero-phosphocholine (DMPC) or palmitoyl-oleoyl-phosphatidylcholine (POPC) in combination with sodium cholate.

The complex from DIBMA and membrane protein can be used with many biophysical assays, such as SDS-PAGE, SEC, Western Blot, UV/Vis spectroscopy, and many chromatographic procedures.

Reconstitution of copolymer solution

Cube DIBMA copolymers are delivered lyophilized from a solution containing 50 mM HEPES, pH 7.5. Each aliquot contains 50 mg protein. Adding 0.5 mL double distilled water will restore the original solution with a copolymer concentration of 10%. This stock can be diluted further as required by the different application protocols.

Technical details

Name: Diisobutylene Maleic Acid glucosamide copolymer, sodium salt / DIBMA / in 50 mM HEPES, pH 7.5

MW: >15,000 g/mol Solubility: >10% (H_2O) Specific gravity: 1.1 pH (dissolved): 7.5 ± 0.1

Shipping & Storage

Shipment Temperature	Ambient temperature
Storage of lyophilized copolymer	-20°C for several years
Storage of dissolved copolymer	2-8°C for several days

Additional Information

For DIBMA protocols, please visit our webpage at: www.cube-biotech.com/protocols. For background information on nanodiscs and possible applications please see http://www.cube-biotech.com/background-tips-and-tricks/what-are-nanodiscs.

Cube Biotech also offers his-tagged and untagged MSP1D1, MSP1E3D1, MSP1D1 Δ H5 and MSP2N2 his-tagged proteins,

For protein affinity purification, Cube Biotech offers dedicated agarose resins, magnetic beads and prepacked cartridges. Also available are a range of ultrapure detergents and buffers for extraction and purification of proteins.

See www.cube-biotech.com/products for details.

Literature references

- 1. A.O. Oluwole, B. Danielczak, A. Meister, J.O. Babalola, C. Vargas, S. Keller, Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer, Angew. Chem. Int. Ed. 56 (2017) 1919–1924.
- A.O. Oluwole, J. Klingler, B. Danielczak, J.O. Babalola, C. Vargas, G. Pabst, S. Keller, Formation of lipidbilayer nanodiscs by diisobutylene/maleic acid (DIBMA) Copolymer, Langmuir 33 (2017) 14378–14388

<u>Disclaimer</u>: Our products are intended for molecular biology applications. These products are not intended for the diagnosis, prevention, or treatment of a disease.

Proteins are our passion.